Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexander J. Blake,^a* Anthony G. Osborne^b and R. E. Hollands^b

^aSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England, and ^bSchool of Chemistry, University of Exeter, Exeter EX4 4QD, England

Correspondence e-mail: a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.018 \text{ Å}$ R factor = 0.054 wR factor = 0.135 Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Acetyl(2,2'-bipyridine)chloro(1,1'-dichloroferrocen-2-yl)methylplatinum(IV)

Reaction of acetyl chloride with $[Pt(Cl_2Fc)(CH_3)(bipy)]$, where Cl_2Fc and bipy are 1,1'-dichloroferrocen-2-yl and 2,2'bipyridine, respectively, results in the *trans* oxidative-addition of the acetyl chloride to the Pt^{II} precursor to give the Pt^{IV} title compound, *i.e.* $[Pt(CH_3)(C_2H_3O)(C_{10}H_7Cl_2Fe)Cl(C_{10}H_8N_2)]$. The three Pt-C bonds in the title compound are in a *fac*configuration and range in length from 2.018 (12) to 2.079 (11) Å. The chloro substituents of the ferrocenyl unit are in an eclipsed conformation.

Comment

The title compound, (I), was prepared during a study of the reactivity in oxidative-addition reactions of the 16-electron complex [Pt(Cl₂Fc)(CH₃)(bipy)]. The structure determination of (I) (Fig. 1), shows that the three Pt-C bonds are in the *fac* configuration and that the acetyl chloride has undergone *trans* addition to the Pt^{II} precursor. The Pt-C bond lengths are 2.018 (12), 2.027 (10) and 2.079 (11) Å for acetyl, ferrocenyl and methyl groups, respectively. The conformation of the ferrocenyl group is that of an eclipsed geometry in which the chlorine substituents also eclipse one another: the two chlorines are twisted about the line joining the two ring centroids by only -1.8 (9)°. The Fe centre lies 1.650 (5) Å out of the C1-C5 plane and 1.645 (5) Å from the C6-C10 plane, with a centroid-Fe-centroid angle of 173.7 (3)°.

The chlorine substituents are displaced outwards from their respective ring planes, Cl1 by 0.09 (2) Å and Cl2 by 0.12 (2) Å. The two rings are inclined at an angle of 7.1 (9)°, with the longest inter-ring distances involving separations between corresponding atoms [C1...C6 3.406 (15) and C2...C7 3.416 (14) Å] where at least one of these carries a substituent. These parameters suggest a small but significant degree of repulsion between the two rings.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved Received 4 June 2001 Accepted 14 June 2001 Online 22 June 2001

Figure 1

A view of the title compound showing atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Although individual molecules have chiral centres at Pt and at the Cl_2Fc ligand the single crystal selected was found to be racemic.

Experimental

[Pt(Cl₂Fc)(CH₃)(1,5-cyclooctadiene)] (2.52 g, 4.41 mmol) (Hollands *et al.*, 1985) was dissolved in benzene (40 ml) and a solution of bipy (1.51 g, 9.68 mmol) in benzene (10 ml) was added. The solution was heated under reflux for 6 h and then allowed to cool. Brown crystals of [Pt(Cl₂Fc)(CH₃)(bipy)] were isolated by filtration. Yield 2.65 g (97%). [Pt(Cl₂Fc)(CH₃)(bipy)] (0.18 g, 0.29 mmol) was dissolved in dichloromethane (40 ml) and acetyl chloride (0.07 ml, 1.02 mmol) was added. The solution was stirred for 1 h. Evaporation of the solvent, column chromatography of the residue on alumina and elution with benzene/chloroform (1:1) produced firstly unreacted material and secondly an orange oil. Crystallization of the oil from dichloromethane/hexane produced the pure title compound as orange–red crystals. Yield 0.12 g (58%).

Crystal data

$[Pt(CH_3)(C_2H_3O)(C_{10}H_7Cl_2Fe)-$	$D_x = 2.041 \text{ Mg m}^{-3}$
$Cl(C_{10}H_8N_2)]$	Mo $K\alpha$ radiation
$M_r = 698.71$	Cell parameters from 80
Monoclinic, $P2_1/a$	reflections
a = 10.0991 (11) Å	$\theta = 15 - 16^{\circ}$
b = 14.1486 (15) Å	$\mu = 7.15 \text{ mm}^{-1}$
c = 16.205 (3) Å	T = 298 (2) K
$\beta = 100.850 \ (10)^{\circ}$	Plate, orange
V = 2274.1 (5) Å ³	$0.33 \times 0.33 \times 0.10 \text{ mm}$
Z = 4	
Data collection	

Stoe Stadi-4 four-circle diffract-	$R_{\rm int} = 0.016$
ometer	$\theta_{\rm max} = 26.0^{\circ}$
$\omega/2\theta$ scans	$h = -14 \rightarrow 13$
Absorption correction: ψ scan	$k = 0 \rightarrow 19$
North et al., 1968	$l = 0 \rightarrow 22$
$T_{\min} = 0.034, T_{\max} = 0.124$	3 standard reflections
7096 measured reflections	frequency: 60 min
4453 independent reflections	intensity decay: 5.0%
3164 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(E^2) + (0.075P)^2]$
r = r = r = r = r	$W = 1/[0(T_0) + (0.0751)]$
$R[F^2 > 2\sigma(F^2)] = 0.054$	+ 3.92P]
$wR(F^2) = 0.135$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.002$
4453 reflections	$\Delta \rho_{\rm max} = 1.52 \text{ e} \text{ Å}^{-3}$
282 parameters	$\Delta \rho_{\rm min} = -1.54 \text{ e} \text{ Å}^{-3}$
H atoms: see text	

Due to the relative weakness of the higher-angle data, only reflections with $2\theta \le 52^{\circ}$ were included in the refinement: the corresponding index limits are $-12 \le h \le 12$, $0 \le k \le 17$, $0 \le l \le 19$. Methyl H atoms were located from ΔF syntheses while others were placed geometrically. In refinement, methyl groups were constrained to be rigid rotating groups with C–H distances at 0.96 Å and with $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were constrained to ride at 0.93 Å from their carrier atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *DIF*4 (Stoe & Cie, 1987); cell refinement: *DIF*4; data reduction: *REDU*4 (Stoe & Cie, 1987); program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2001); software used to prepare material for publication: *SHELXL*97 and *PLATON*.

We thank EPSRC (UK) for the provision of a diffract-ometer.

References

Hollands, R. E., Osborne, A. G., Whiteley, R. H. & Cardin, C. J. (1985). J. Chem. Soc. Dalton Trans. pp. 1527–1530.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.

Sheldrick, G. M. (1997). *SHELXL*97. University of Göttingen, Germany. Spek, A. L. (2001). *PLATON*. University of Utrecht, The Netherlands. Stoe & Cie (1987). *DIF*4 and *REDU*4. Stoe & Cie, Darmstadt, Germany.